Domain Decomposition Spectral Approximations for an Eigenvalue Problem with a Piecewise Constant Coefficient

نویسندگان

  • M. S. Min
  • D. Gottlieb
چکیده

Consider a model eigenvalue problem with a piecewise constant coefficient. We split the domain at the discontinuity of the coefficient function and define the multidomain variational formulation for the eigenproblem. The discrete multidomain variational formulations are defined for Legendre–Galerkin and Legendre-collocation methods. The spectral rate of convergence of the approximate eigensolutions is proven for the Legendre–Galerkin method. The minmax principle is used for the convergence analysis. The Legendre-collocation, Chebyshev-collocation, Legendre-collocation penalty, and Chebyshevcollocation penalty methods are also defined by using the multidomain approach, and their numerical results applied to the eigenproblem are demonstrated. The spectral convergence for the eigenvalues and eigenfunctions is confirmed for all the multidomain spectral techniques presented here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral element approximation of Fredholm integral eigenvalue problems

The Karhunen-Loève expansion of a Gaussian process, a common tool on finite element methods for differential equations with stochastic coefficients, is based on the spectral decomposition of its covariance function. The eigenpairs of the covariance are expressed as a Fredholm integral equation of second kind, which can be readily approximated with piecewise-constant finite elements. In this wor...

متن کامل

A new algorithm for solving Van der Pol equation based on piecewise spectral Adomian decomposition ‎method‎

‎‎In this article‎, ‎a new method is introduced to give approximate solution to Van der Pol equation‎. ‎The proposed method is based on the combination of two different methods‎, ‎the spectral Adomian decomposition method (SADM) and piecewise method‎, ‎called the piecewise Adomian decomposition method (PSADM)‎. ‎The numerical results obtained from the proposed method show that this method is an...

متن کامل

Numerical Algorithms for the Direct Spectral Transform with Applications to Nonlinear Schrodinger Type Systems

We implement two different algorithms for computing numerically the direct Zakharov–Shabat eigenvalue problem on the infinite line. The first algorithm replaces the potential in the eigenvalue problem by a piecewise-constant approximation, which allows one to solve analytically the corresponding ordinary differential equation. The resulting algorithm is of second order in the step size. The sec...

متن کامل

Super-geometric Convergence of a Spectral Element Method for Eigenvalue Problems with Jump Coefficients

We propose and analyze a C spectral element method for a model eigenvalue problem with discontinuous coefficients in the one dimensional setting. A super-geometric rate of convergence is proved for the piecewise constant coefficients case and verified by numerical tests. Furthermore, the asymptotical equivalence between a Gauss-Lobatto collocation method and a spectral Galerkin method is establ...

متن کامل

Physics - Based Balancing Domain Decomposition by 1 Constraints for Heterogeneous Problems

In this work, we present a balancing domain decomposition by constraints method 4 based on an aggregation of elements depending on the physical coefficients. Instead of imposing 5 constraints on purely geometrical objects (faces, edges, and vertices) of the partition interface, we use 6 interface objects (subfaces, subedges, and vertices) determined by the variation of the coefficients. 7 The n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2005